MALDI MASS
SPECTROMETRY
FOR SYNTHETIC
POLYMER ANALYSIS
CHEMICAL ANALYSIS
A SERIES OF MONOGRAPHS ON ANALYTICAL CHEMISTRY
AND ITS APPLICATIONS

Series Editor
J. D. WINEFORDNER

Volume 175

A complete list of the titles in this series appears at the end of this volume.
MALDI MASS SPECTROMETRY FOR SYNTHETIC POLYMER ANALYSIS

EDITED BY LIANG LI
CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Preface</td>
<td>vii</td>
</tr>
<tr>
<td></td>
<td>Contributors</td>
<td>ix</td>
</tr>
<tr>
<td>CHAPTER 1</td>
<td>Overview of MS and MALDI MS for Polymer Analysis</td>
<td>1</td>
</tr>
<tr>
<td>Liang Li</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHAPTER 2</td>
<td>Ionization Processes and Detection in MALDI-MS of Polymers</td>
<td>9</td>
</tr>
<tr>
<td>Renato Zenobi</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHAPTER 3</td>
<td>Time-of-Flight Mass Spectrometry for Polymer Characterization</td>
<td>27</td>
</tr>
<tr>
<td>Liang Li and Randy M. Whittal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHAPTER 4</td>
<td>Polymer Analysis with Fourier Transform Mass Spectrometry</td>
<td>53</td>
</tr>
<tr>
<td>Sabine Borgmann and Charles L. Wilkins</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHAPTER 5</td>
<td>Tandem Mass Spectrometry and Polymer Ion Dissociation</td>
<td>85</td>
</tr>
<tr>
<td>Michael J. Polce and Chrys Wesdemiotis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHAPTER 6</td>
<td>Conventional MALDI Sample Preparation</td>
<td>129</td>
</tr>
<tr>
<td>Kevin G. Owens and Scott D. Hanton</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHAPTER 7</td>
<td>Solvent-Free MALDI Sample Preparation</td>
<td>159</td>
</tr>
<tr>
<td>Sarah Trimpin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHAPTER 8</td>
<td>MALDI Mass Spectrometry for the Quantitative Determination of Polymer Molecular Mass Distribution</td>
<td>187</td>
</tr>
<tr>
<td>Charles M. Guttman and William E. Wcdlce</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
CHAPTER 9 NEW APPROACHES TO DATA REDUCTION IN MASS SPECTROMETRY

William E. Wallace, Anthony J. Kearsley, and Charles M. Guttman

CHAPTER 10 MALDI-MS/MS FOR POLYMER STRUCTURE AND COMPOSITION ANALYSIS

Anthony T. Jackson

CHAPTER 11 LC-MALDIMS FOR POLYMER CHARACTERIZATION

Steffen M. Weidner and Jana Falkenhagen

CHAPTER 12 MALDI MS APPLICATIONS FOR INDUSTRIAL POLYMERS

Scott D. Hanton and Kevin G. Owens

INDEX
WITH THE INCREASE in structural and compositional complexity of synthetic polymers, detailed characterization of a newly developed polymeric material is often a challenging task. Mass spectrometry (MS) has played an increasingly important role in polymer analysis. In particular, the technique of matrix-assisted laser desorption ionization (MALDI) MS has transformed the practice of polymer characterization.

Compared to other mass spectrometric techniques, MALDI MS provides several unique attributes that, taken together, make it a powerful tool for analyzing a wide range of polymers. However, because of the diversity in polymer chemistry, there is no universal approach in MALDI MS for the analysis of polymers. The major challenge in applying MALDI MS to characterize a particular polymeric system lies in developing a suitable analytical protocol tailored to this polymer. This usually involves screening and selecting a suitable matrix from a list of known matrices used for the analysis of similar polymers. In some cases, searching for new matrices is required. Once an appropriate matrix is found, paying attention to the many details in the MALDI MS analysis procedure is still required to ensure the final mass spectrometric results reflect the true chemical nature of the polymeric system.

There are a number of pitfalls during the MALDI MS analysis of a polymer sample. It is often easy to collect some mass spectral signals, but is not trivial to generate a correct mass spectrum that truly represents the chemical composition of the sample. Many experimental and instrumental factors can contribute to measurement errors. The intent of this book is to provide a tutorial on each important subject area related to MALDI MS. It is written for those who wish to gain a better understanding of the processes involved in MALDI MS polymer analysis. Through this book, we hope the reader will appreciate the subtlety of each step of the analysis that can influence the results and be cautious in data interpretation. We also hope the technical discussion often accompanied with useful hints and comments may inspire new ideas for developing suitable protocols tailored to a specific application.

We note that many aspects of the MALDI MS technique are not fully or well understood at present and thus, a few similar topics (e.g., ionization mechanism and the role of the matrix) are discussed in different chapters from different angles or viewpoints.

I would like to thank all the contributors for their enthusiastic support and their patience. They have written the chapters with a high educational content and provided many expert views on the subjects. They have treated the topics with professionalism and with a balanced view of the pros and cons of each subject.
Because of their excellent work, I believe this book will serve well researchers entering the field as well as graduate students who wish to learn polymer MS. I would also like to thank the anonymous reviewers of each chapter for their critical comments and suggestions.

I wish to express my appreciation to Michael Leventhal of John Wiley for his assistance and patience. I would like to take this opportunity to acknowledge my students and postdoctoral fellows, Dr. Randy M. Whittal, Dr. David C. Schriemer, Dr. Talat Yalcin, Dr. Yuqin Dai, Dr. Wojciech Gabryelski, Ms. Honghui Zhu, Ms. Xinlei Yu, Dr. Nan Zhang, and Dr. Rui Chen, for their hard work on polymer MS. I thank many collaborators in the polymer industry, government institutions, and universities for their guidance, inspirational discussion, and friendship. Finally, I would like to thank my wife, Monica Li, for her love and support and our lovely children, Matthew and Stephanie, for their understanding and joyful smiles.

Liang Li
Edmonton, Alberta, Canada
May 2009
CONTRIBUTORS

Sabine Borgmann, Department of Chemistry and Biochemistry, University of Arkansas; Email: sabine-borgmann@web.de

Jana Falkenhagen, Federal Institute for Materials Research and Testing (BAM), Department I, Analytical Chemistry, Reference Materials, Richard-Willstaetter-Strasse 11, Berlin, Germany; Email: Jana.Falkenhagen@bam.de

Charles Guttman, Polymers Division, National Institute of Standards and Technology, Gaithersburg, MD; Email: charles.guttman@nist.gov

Scott D. Hanton, Hanton, Air Products & Chemicals, Inc., Allentown, PA; Email: hantonsd@airproducts.com

Anthony T. Jackson, Expert Capability Group Leader, Measurement and Analytical Science, Analytics and Physics (CAP), AkzoNobel RD&I, Deventer, The Netherlands; Email: tony.jackson@akzonobel.com

Anthony J. Kearsley, Mathematical and Computational Sciences Division, National Institute of Standards and Technology, Gaithersburg, MD; Email: ajk@nist.gov

Liang Li, Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada; Email: liang.li@ualberta.ca

Kevin G. Owens, Department of Chemistry, Drexel University, Philadelphia, PA; Email: kevin.owens@drexel.edu

Michael J. Polce, Lubrizol Advanced Materials, Cleveland, OH; Email: michael.polce@lubrizol.com

Sarah Trimpin, Department of Chemistry, Wayne State University, Detroit, MI; Email: strimpin@chem.wayne.edu

William E. Wallace, Polymers Division, National Institute of Standards and Technology, Gaithersburg, MD; Email: william.wallace@nist.gov

Steffen M. Weidner, Federal Institute for Materials Research and Testing (BAM), Department I, Analytical Chemistry, Reference Materials, Richard-Willstaetter-Strasse 11, Berlin, Germany; Email: steffen.weidner@bam.de
Chrys Wesdemiotis, Department of Chemistry, The University of Akron, Knight Chemical Laboratory, Akron, OH; Email: wesdemiotis@uakron.edu

Randy M. Whittal, Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada; Email: randy.whittal@ualberta.ca

Charles L. Wilkins, Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR; Email: cwilkins@mail.uark.edu

Renato Zenobi, Department of Chemistry and Applied Biosciences ETH Zurich, Switzerland; Email: ZENOBI@org.chem.ethz.ch
CHAPTER

OVERVIEW OF MS AND MALDI
MS FOR POLYMER ANALYSIS

Liang Li
Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada

POLYMER ANALYSIS involves many different activities ranging from average molecular mass determination to detailed characterization of chemical structures or compositions. It is a key step in understanding the relations of chemophysical properties of a polymeric material and its functions. It is essential for quality control of polymeric products as well as in troubleshooting of a polymer manufacturing process. Currently, there is a high demand for developing specialty materials in many applications such as safe water treatment, recyclable materials in high-tech products, and drug delivery systems with improved therapeutic efficacies. Many of the new materials are based on synthetic polymers. One can expect that the field of polymer analysis will continue to become increasingly important in polymer industry and polymer science.

Polymer analysis is often a challenging task, particularly when a polymer is made from new polymer chemistry, catalysis, or formulation process. Fortunately, a great number of analytical techniques are now available for polymer analysis. They include separation techniques [1-7], spectroscopic methods [8-11], NMR [12-14], X-ray [15-17], microscopy [18-21] and other surface characterization tools [22-24], and mass spectrometry (MS) [25-35]. For a given polymeric system, these techniques each having advantages and limitations over the others are often combined to provide a detailed characterization of the system [33-41]. Among them, MS has become an indispensable tool for polymer analysis and has widely been used to study polymer structure, polymer composition, molecular mass and molecular mass distribution, bulk and surface properties, impurity contents, and so on.

MS offers several important attributes for polymer analysis [25-35]. MS, based on accurate mass measurement and/or tandem MS (MS/MS) analysis, can generate rich chemical information that is highly specific for polymer structural analysis. MS is also very sensitive, allowing the detection and identification of minor polymer components or impurities in a composed polymeric material and any by-
product of polymerization reaction of a desired polymer. Rapid MS analysis can be done for many polymer samples where no prior sample treatment or extensive separation is needed. MS can potentially provide quantitative information required for determination of the average molecular mass and molecular mass distribution of a polymer or characterization of relative amounts of different components of a polymer mixture. Some forms of MS such as secondary ion mass spectrometry (SIMS) can also be used to characterize polymer surfaces [35].

Almost all mass spectrometric techniques developed so far have been tried for polymer analysis, with varying degrees of success; some have been more widely used than the others. Traditional techniques such as electron impact ionization (EI), chemical ionization (CI), and gas chromatography/mass spectrometry (GC/MS) are still used for generating structural or compositional information on polymers, albeit applicable to only low-mass polymers or their precursors (monomers, dimers, etc.). Pyrolysis MS or GC/MS uses a pyrolysis process to thermally degrade polymers, including very high-molecular-mass polymers, to fragment products that are subjected to MS or GC/MS analysis [25]. This technique is still useful for generating chemical information on monomer structures, copolymer repeat units, end groups, and impurities or additives, particularly for those polymers not amendable to modern MS techniques [25]. In applying this technique, one needs to be cautious in interpreting the mass spectral results, as thermal degradation often alters the chemical structures of the polymeric materials. One interesting recent development in pyrolysis MS is to carry out a controlled degradation of polymer so that low-mass polymers or oligomers, instead of very low-mass products suitable for EI or CI, are generated. The low-mass polymers are analyzed using modern techniques such as matrix-assisted laser desorption ionization (MALDI) MS [42-44].

In the 1970s and earlier 1980s, active researches were being pursued to develop new ionization sources to overcome the limitations of EI and CI to handle thermally unstable and/or large molecules. Desorption techniques such as SIMS, fast atom bombardment (FAB), and laser desorption/ionization (LDI) were rapidly developed, and many researchers demonstrated that these techniques were useful for not only biopolymer characterization, but also synthetic polymer analysis. In the late 1980s, the introduction of MALDI and electrospray ionization (ESI) opened a new era in mass spectrometric analysis of biomolecules and synthetic polymers. Before MALDI and ESI, MS was limited to the analysis of relatively low-molecular-mass polymers of less than 3000 Da. Only in some favorable polymeric systems, such as poly(ethylene glycol) (PEG), MS analysis of up to 10,000Da could be done [45]. Even for these polymers, the analysis was not routine, and was usually done by an experienced researcher.

ESI can be particularly useful for analyzing high-mass molecules that are easy to form multiply charged gas phase ions. PEG was one of the chemical samples used to illustrate the power of ESI for high-mass analysis in the early development of the ESI technique [46], PEG can readily form multiply charged ions by attaching multiple sodium or potassium ions to a polymer chain and they are stable in the gas phase. However, a majority of synthetic polymers do not form multiply charged ions easily, and hence ESI has a limited applicability in synthetic polymer analysis, especially for high-mass polymers. Many polymers require the use of metal ions to
form adduct ions. These adduct ions are not stable in the gas phase and do not survive during the translation from atmosphere to the mass analyzer via an ESI interface. Even if multiply charged ions are formed, to deduce molecular mass or molecular mass distribution information, oligomer ions must be resolved to determine the charge states. This is not trivial as many peaks from oligomers with different numbers of repeat units and different charge states may overlap. In addition, the oligomer distribution from the ESI ions is very sensitive to the experimental conditions such as the skimmer voltages, making accurate determination of the average mass and mass distribution difficult [47-50].

Despite these limitations, ESI can be a very powerful technique for characterizing ESI-able polymers such as low-mass PEGs or some water-soluble polymers with diverse end-group structures [29, 51-53]. This is because ESI offers several important attributes. First of all, ESI can be readily interfaced with solution-based separation techniques such as high-performance liquid chromatography (HPLC) for separating complex mixtures [54-56]. More recently, ion mobility separation in the gas phase can be used to further separate closely related polymeric ions [57-60]. Second, many different types of ESI tandem mass spectrometers, including those capable of carrying out multiple-stage dissociation of an ion, are available for generating structural and compositional information on a polymer sample [61]. Third, multiply charged ions produced by ESI are relatively easier to dissociate than a singly charged ion often found in MALDI [62-66]. Finally, high-performance ESI mass spectrometers such as high-resolution time-of-flight (TOF), Orbitrap, and high-field Fourier transform ion cyclotron resonance (FT-ICR) MS are now available, offering excellent mass resolving power and mass measurement accuracy. Overall, the combination of new separation tools with high-performance ESI MS will likely increase its popularity in polymer analysis, particularly for detailed characterization of chemical structures and compositions of a polymeric system. But, the major obstacle still remains: many polymers simply do not ionize well by ESI.

MALDI MS transforms the practice of polymer characterization. It has now become a widely used technique for analyzing a great variety of polymers. In this book, many aspects of the MALDI MS technique will be discussed in great detail. There are several unique attributes of MALDI MS, together making it a powerful technique for polymer characterization. In MALDI MS, molecular mass and molecular mass distribution information can be obtained for polymers of narrow polydispersity with high precision and speed. The accuracy, although difficult to determine due to the lack of well-characterized standards, appears to be good as well [67, 68]. The MALDI analysis of polymers does not require the use of polymer standards for mass calibration. Furthermore, this technique uses a minimum amount of solvents and other consumables, which translates into low operational costs. MALDI MS can also provide structural information, if the instrumental resolution is sufficient to resolve oligomers. In this case, monomer and end-group masses can be deduced from the accurate measurement of the mass of individual oligomers. This is particularly true when a high-resolution instrument such as FT-ICR MS is used for polymer analysis. With the use of MALDI MS/MS, structural characterization can be facilitated. Finally, impurities, by-products, and subtle changes in polymer distributions can often be detected even for relatively complex polymeric systems such as copolymers.
Because of these attributes, in many labs, MALDI MS has become a routine tool for polymer characterization. This is evident from an increasing number of publications in polymer science literature (e.g., Macromolecules), which indicate the use of MALDI MS as a tool for characterizing newly grafted or synthesized polymers. In the industry dealing with polymeric materials, MALDI MS is often combined with other analytical techniques to provide detailed analyses of a polymeric system. In some cases, MALDI MS is the only technique that can provide the information required to solve a practical problem. One example is in the area of product failure analysis involving four copolymer samples [69].

However, current MALDI techniques have several limitations for polymer analysis. Some narrow polydispersity polymers cannot be readily analyzed. There is a need to develop sample preparation protocols to analyze important polymers such as polyethylene, perfluoropolymer, and polycationic polymers. The analysis of polystyrenes with molecular mass up to 1.5 million has been demonstrated. But it remains to be seen how the technique can apply to other high-molecular-mass polymers (MW > 500,000). Searching for sensitive sample preparation methods and improving the overall detection sensitivity of the current MALDI instrument for high-mass analysis are required. The MALDI technique has not yet generated reliable results in direct analysis of broad polydispersity polymers. The instrumental and chemistry problems associated with the analysis of these broad polydispersity polymers have been studied by a number of groups, as discussed in several chapters in this book. We now have a better understanding of the issues involved, and we will see more development in this area in addressing these issues in the near future. Alternatively, gel permeation chromatography or size exclusion chromatography can be combined with MALDI MS for polymers of broad polydispersity. Finally, it is difficult, at present, to deduce quantitative information on polymer mixtures from the MALDI spectra. The overall detection sensitivity for different polymers is not the same. There is no direct correlation between the relative peak areas in the spectra and the relative amounts in the mixture. However, information on relative changes in polymer composition can be obtained, if several polymeric systems containing the same polymer mixture, but different relative amounts, are available for interrogation.

In conclusion, many different mass spectrometric techniques are currently available for detailed characterization of a synthetic polymer. Among them, MALDI MS has been widely used for analyzing a great variety of polymers. It offers some unique attributes while some limitations remain. However, future advances in fundamental studies of the MALDI process, sample preparation methods, ion detection techniques, and data processing issues will undoubtedly enhance its role in polymer science in general. Many of these topics will be the subject of discussion throughout this book.

REFERENCES

2.1 THE MATRIX-ASSISTED LASER DESORPTION/IONIZATION (MALDI) METHOD AND MALDI INSTRUMENTATION

One of the powerful soft ionization methods that is in widespread use for the analysis of high molecular weight, nonvolatile molecules is MALDI. MALDI was largely developed in the laboratory of Franz Hillenkamp at the University of Munster, Germany [1-3]. A similar method was developed almost simultaneously by Koichi Tanaka et al. at Shimadzu Research Laboratories in Kyoto, Japan [4]. Hillenkamp’s method, which is very widely used today, works by embedding the sample in an organic matrix to facilitate desorption and ionization of the sample upon irradiation by a pulsed UV laser. Tanaka’s paper reported the use of finely dispersed metal powder in a glycerol matrix for the same purpose. The main field of application of MALDI is the analysis of biopolymers such as peptides, proteins, or DNA. Another very important application is the chemical analysis of polymers, which is covered in this book and in a number of other publications [5-9]. In both cases, molecular ions well above 100,000 Da can be generated without fragmentation.

Figure 2.1 shows a typical linear MALDI time-of-flight (TOF) mass spectrometer. It consists of a sample holder, laser optics, a high-voltage acceleration stage, a drift tube, and detection electronics for the arriving ions. The sample is deposited at the tip of the sample holder that is introduced into the high vacuum of the ion source through an interlock. The pulse of a nitrogen laser ($\lambda = 337$ nm) is focused onto the sample to initiate desorption and ionization; a small part of the laser pulse is split off to trigger the data acquisition. The ions formed are all accelerated to the same kinetic energy and are mass separated by virtue of their transit time (“TOF”) through a field-free drift tube. Detection is usually done by ion-to-electron conver-
Figure 2.1. Schematic of a typical linear time-of-flight MALDI mass spectrometer. The valve separating the detector from the source region is optional but useful, for example, for maintenance or cleaning of the ion source. See color insert.

sion using a multichannel plate (MCP) detector, whose signal is read by a digital oscilloscope.

There are other variants of MALDI mass spectrometers. Other mass analyzers such as Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometers, ion traps, quadrupole-based instruments, sector mass spectrometers, or hybrid instruments can be used. The TOF mass analyzer, however, is by far the most frequently used, because it lends itself naturally to ion production by a short laser pulse. The modest mass resolution of linear TOF instruments can be greatly improved using appropriate ion optics, delayed extraction, and a reflectron TOF mass analyzer. All of these options are incorporated in modem commercial instruments.

The precise way in which the ions are produced can also vary. Many different laser lines have been used for MALDI, including infrared radiation at 2.94\(\mu\)m (Er:YAG laser) and 10.6 \(\mu\)m (CO\(_2\) laser) with special matrices, but 337 nm (N\(_2\) laser) and 355 nm (third harmonic of the Nd:YAG laser) are the most popular, successful, and affordable options, and are extensively used in the field of polymer MALDI mass spectrometry (MS). Some mass spectrometers require a continuous or quasi-continuous ion production or are designed to operate with atmospheric pressure ion sources. In the former case, lasers with high repetition rates, up to 2 kHz, have been used quite successfully. The latter requirement is easily met by atmospheric pressure